
Pixie: Fast and Generalizable Supervised Learning of
3D Physics from Pixels

Long Le1∗ Ryan Lucas2 Chen Wang1 Chuhao Chen1

Dinesh Jayaraman1 Eric Eaton1 Lingjie Liu1

1University of Pennsylvania 2Massachusetts Institute of Technology

gravitygravity

windwind

RBG

PIXIE

discrete continuous

CLIP

gravitygravity

INPUT

Figure 1: We introduce PIXIE, a novel method for learning simulatable physics of 3D scenes from
visual features. Trained on a curated dataset of paired 3D objects and physical material annotations,
PIXIE can predict both the discrete material types (e.g., rubber) and continuous values including
Young’s modulus, Poisson’s ratio, and density for a variety of materials, including elastic, plastic,
and granular. The predicted material parameters can then be coupled with a learned static 3D model
such as Gaussian splats and a physics solver such as the Material Point Method (MPM) to produce
realistic 3D simulation under physical forces such as gravity and wind.

Abstract

Inferring the physical properties of 3D scenes from visual information is a critical
yet challenging task for creating interactive and realistic virtual worlds. While hu-
mans intuitively grasp material characteristics such as elasticity or stiffness, existing
methods often rely on slow, per-scene optimization, limiting their generalizability
and application. To address this problem, we introduce PIXIE, a novel method that
trains a generalizable neural network to predict physical properties across multiple
scenes from 3D visual features purely using supervised losses. Once trained, our
feed-forward network can perform fast inference of plausible material fields, which

∗Correspondence: vlongle@seas.upenn.edu

Preprint. Under review.

coupled with a learned static scene representation like Gaussian Splatting enables
realistic physics simulation under external forces. To facilitate this research, we
also collected PIXIEVERSE, one of the largest known datasets of paired 3D assets
and physic material annotations. Extensive evaluations demonstrate that PIXIE is
about 1.46-4.39x better and orders of magnitude faster than test-time optimization
methods. By leveraging pretrained visual features like CLIP, our method can
also zero-shot generalize to real-world scenes despite only ever been trained on
synthetic data. https://pixie-3d.github.io/

1 Introduction

Advances in learning-based scene reconstruction with Neural Radiance Fields [28] and Gaussian
Splatting [18] have made it possible to recreate photorealistic 3D geometry and appearance from
sparse camera views, with broad applications from immersive content creation to robotics and
simulation. However, these approaches focus exclusively on visual appearance—capturing the
geometry and colors of a scene while remaining blind to its underlying physical properties.

Yet the world is not merely a static collection of shapes and textures. Objects bend, fold, bounce,
and deform according to their material composition and the forces acting upon them. Consequently,
there has been a growing body of work that aims to integrate physics into 3D scene modeling
[31, 27, 23, 11, 10, 41, 32, 12, 26, 42, 6]. Current approaches for acquiring the material properties of
the scene generally fall into two categories, each with significant limitations. Some works such as
[41, 12] require users to manually specify material parameters for the entire scene based on domain
knowledge. This manual approach is limited in its application as it places a heavy burden on the
user and lacks fine-grained detail. Another line of work aims to automate the material discovery
process via test-time optimization. Works including [15, 23, 45, 14, 26, 44] leverage differentiable
physics solvers, iteratively optimizing material fields by comparing simulated outcomes against
ground-truth observations or realism scores from video generative models. However, predicting
physical parameters for hundreds of thousands of particles from sparse signals (i.e., a single rendering
or distillation scalar loss) is an extremely slow and difficult optimization process, often taking hours
on a single scene. Furthermore, this heavy per-scene memorization does not generalize: for each new
scene, the incredibly slow optimization has to be run from scratch again.

In this paper, we propose a new framework, PIXIE, which unifies geometry, appearance, and physics
learning via direct supervised learning. Our approach is inspired by how humans intuitively under-
stand physics: when we see a tree swaying in the wind, we do not memorize the stiffness values
for each specific coordinate (x, y, z) – instead, we learn that objects with tree-like visual features
behave in certain ways when forces are applied. This physical understanding from visual cues allows
us to anticipate the motion of a different tree or even other vegetation like grass, in an entirely new
context. Thus, our insight is to leverage rich 3D visual features such as those distilled from CLIP [33]
to predict physical materials in a direct supervised and feed-forward way. Once trained, our model
can associate visual patterns (e.g., "if it looks like vegetation") with physical behaviors (e.g., "it
should have material properties similar to a tree"), enabling fast inference and generalization across
scenes. To facilitate this research, we have curated and labeled PIXIEVERSE, a dataset of 1624 paired
3D objects and annotated materials spanning 10 semantic classes. We developed a sophisticated
multi-step and semi-automatic data labeling process, distilling pretrained models including Gemini
[36], CLIP [33], and human prior into the dataset. To our knowledge, this is the largest open-source
dataset of paired 3D assets and physical material labels. Trained on PIXIEVERSE, our feed-forward
network can predict material fields that are 1.46-4.39x better and orders of magnitude faster than
test-time optimization methods. By leveraging pretrained visual features, PIXIE can also zero-shot
generalize to real-world scenes despite only ever being trained on synthetic data.

Our contributions include:

1. Novel Framework for 3D Physics Prediction: We introduce PIXIE, a unified framework that
predicts discrete material types and continuous physical parameters (Young’s modulus, Poisson’s
ratio, density) directly from visual features using supervised learning.

2. PIXIEVERSE Dataset: We curate and release PIXIEVERSE, the largest open-source dataset of
3D objects with physical material annotations (1624 objects, 10 semantic classes).

2

https://pixie-3d.github.io/

3. Fast and Generalizable Inference: By leveraging pretrained visual features from CLIP and a
feed-forward 3D U-Net, PIXIE performs inference orders of magnitude faster than prior test-time
optimization approaches, achieving a 1.46-4.39x improvement in realism scores as evaluated by a
state-of-the-art vision-language model.

4. Zero-Shot Generalization to Real Scenes: Despite being trained solely on synthetic data, PIXIE
generalizes to real-world scenes, showing how visual feature distillation can effectively bridge the
sim-to-real gap.

5. Seamless Integration with MPM Solvers: The predicted material fields can be directly coupled
with Gaussian splatting models for realistic physics simulations under applied forces such as wind
and gravity, enabling interactive and visually plausible 3D scene animations.

2 Related Work

2D World Models Some early works [3, 2] learn to predict material labels on 2D images. Recently,
learning forward dynamics from 2D video frames has also been explored extensively. For instance,
Google’s Genie [30] trains a next-frame prediction model conditioned on latent actions derived from
user inputs, capturing intuitive 2D physics in an unsupervised manner. While these methods achieve
impressive 2D generation and control, they do not explicitly model 3D geometry or a physically
grounded world. Other works such as [7, 24] also explore generating or editing images based on
learned real-world dynamics. While these methods achieve impressive results in 2D visual synthesis
and can imply motion dynamics, they typically do not explicitly model 3D geometry, and only encode
physics implicitly via next-frame prediction rather than through explicit material parameters, nor
do they infer physically grounded material properties decoupled from appearances. These can lead
to problems such as a lack of object permanence or implausible interactions. In contrast, PIXIE
directly operates in 3D, predicting explicit physical parameters (e.g., Young’s modulus, density) for
3D objects, enabling their integration into 3D physics simulators or neural networks [38, 29] for
realistic interaction.

Manual Assignment or Assignment of Physics using LLMs A number of recent methods
have explored combining learned 3D scene representations (e.g., Gaussian splatting) with a physics
solver where material parameters are assigned manually or through high-level heuristics. This often
involves users specifying material types for the scene [41, 1] or using scripted object-to-material
dictionaries [32] or large language and vision-language models [13, 5, 42, 22, 40, 25, 4] to guide the
assignment.

Test-time material optimization using videos Other works explore more automatic and principled
ways to infer material properties using rendered videos. Some techniques [15, 23, 45, 16, 43] optimize
material parameters by comparing simulated deformations against ground-truth observations, often
requiring ground-truth multi-view videos of objects or ground-truth particle positions under known
forces. More recent approaches [14, 26, 44] use video diffusion models as priors to optimize
physics via a motion distillation loss. Notably, these approaches suffer from extremely slow per-
scene optimization, often taking hours on a single scene, and do not generalize to new scenes. In
stark contrast, PIXIE employs a feed-forward neural network that, once trained, predicts physical
parameters in seconds, and can generalize to unseen scenes. A recent work Vid2Sim [6] also aims
to learn a generalizable material prediction network across scenes. This was done by encoding a
front-view video of the object in motion with a foundation video transformer [37] and learning to
regress these motion priors into physical parameters. Unlike Vid2Sim, PIXIE does not require videos,
relying instead on visual features from static images. Overall, PIXIE can also be used as an informed
in conjunction with these test-time methods to further refine predictions.

3 Method

Our central thesis is that 3D visual appearance provides sufficient information to recover an object’s
physical parameters. Texture, shading, and shape features captured from multiple calibrated images
correlate with physical quantities such as Young’s modulus and Poisson’s ratio. By learning a mapping
from these visual features to material properties, we can augment a volumetric reconstruction model
(e.g., Gaussian splatting) with a point-wise material estimate, without requiring force response
observations. In Sec. 3.1, we detail our framework, leveraging rich visual priors from CLIP to predict
a material field, which can be used by a physics solver to animate objects responding to external

3

NeRF + CLIP

+ Voxelize

Visual Feature Grid2 Material Learning3

U-Net

Simulation4Posed Multi-view RGBs1

MPM
Physics 
Solver

DISCRETE CONTINUOUS

Figure 2: Method Overview. From posed multi-view RGB images of a static scene, PIXIE first
reconstructs a 3D model with NeRF and distilled CLIP features [35]. Then, we voxelize the features
into a regular N ×N ×N ×D grid where N is the grid size and D is the CLIP feature dimension. A
U-Net neural network [9] is trained to map the feature grid to the material field M̂G which consists
of a discrete material model ID and continuous Young’s modulus, Poisson’s ratio, and density value
for each voxel. Coupled with a separately trained Gaussian splatting model, M̂G can be used to
simulate physics with a physics solver such as MPM.

forces. To train this model, we curated PIXIEVERSE, a large dataset of paired 3D assets and material
annotations, as detailed in Sec. 3.2. Figure 2 gives an overview of our method.

3.1 PIXIE Physics Learning

Problem Formulation Formally, the goal is to learn a mapping:

fθ : (I,Π) −→ M̂ (1)

that turns some calibrated RGB images of the static scene I = {Ik}Kk=1 and their joint camera
specification Π into a continuous three-dimensional material field. For every point p ∈ R3 within the
scene bounds, the field returns

M̂(p) =
(
ℓ̂(p), Ê(p), ν̂(p), d̂(p)

)
,

where ℓ̂ : R3 →{1, . . . , L} is the discrete material class and Ê, ν̂, d : R3 →R are the continuous
Young’s modulus, Poisson’s ratio, and density value respectively. Recall that the discrete material
class, also known as the constitutive law, in Material Point Method is a combination of the choices
of an expert-defined hyperelastic energy function E and return mapping P (Sec. A). Learning a
point-mapping like this provides a fine-grained material segmentation where for every spatial location
we assign both a semantic material label and the physical parameters that characterise that material.
Learning the mapping in Eqn. (1) directly from 2D images to 3D materials is clearly not simple
neither sample efficient. Instead, we leverage a distilled feature field which has rich visual priors to
represent the intermediate mapping between 2D images and 3D visual featutes, and then a separate
U-Net architecture to compute the mapping between 3D visual features and physical materials. We
describe these components below.

3D Visual Feature Distillation Recent work on distilled feature fields has shown that dense 2D
visual feature embeddings extracted from foundation models, such as CLIP, based on images can be
lifted into 3D, yielding a volumetric representation that is both geometrically accurate and rich in
terms of visual and semantic priors [35]. Here, we also augment the classical NeRF representation
[28] to predict a view-independent feature vector in addition to color and density, i.e.,

Fθ : (x,d) 7→
(
f(x), c(x,d), σ(x)

)
,

where c ∈ R3 and σ ∈ R≥0 are standard color and radiance NeRF outputs and f ∈ Rd is a high-
dimensional descriptor capturing visual semantics (e.g., object identity or other attributes), which we
assume to be view-independent. We supervise color with image RGB and features with per-pixel
CLIP embeddings extracted from the training images, using standard volume rendering (App. A.2).
After training, we voxelize the feature field within known scene bounds to obtain a regular grid FG

of dimension N ×N ×N ×D grid, where N = 64 is the grid size and D = 768 is the CLIP feature
dimension, serving as input to our material network.

Material Grid Learning Our material learning network fM consists of a feature projector fP
and a U-Net fU . As the CLIP features are very high-dimensional, we learn a feature projector

4

Figure 3: PIXIEVERSE Dataset Overview. We collect 1624 high-quality single-object assets,
spanning 10 semantic classes (a), and 5 constitutive material types (b). The dataset is annotated with
detailed physical properties including spatially varying discrete material types (b), Young’s modulus
(c), Poisson’s ratio (d), and mass density (e). The left figure shows representative examples from
the dataset: organic matter (tree, shrubs, grass, flowers), deformable toys (rubber ducks), sports
equipment (sport balls), granular media (sand, snow & mud), and hollow containers (soda cans,
metal crates).

network fP , which consists of three layers of 3D convolution mapping CLIP features R768 to a
low-dimensional manifold R64. We then use the U-Net architecture fU to learn the mapping from the
projected feature grid FG to a material grid M̂G(p), which is a voxelized version of the material
field M̂(p). The feature projector fP and U-Net fU are jointly trained end-to-end via a cross entropy
and mean-squared error loss to predict the discrete material classification and the continuous values
including Young’s modulus, Poisson’s ratio and density. More details is in Appendix E.

We found that our voxel grids are very sparse with around 98% of the voxels being background.
Naively trained, the material network fM would learn to always predict background. Thus, we also
separately compute an occupancy mask grid M ∈ RN × RN × RN , constructed by filtering out
all voxels whose NeRF densities fall below a threshold α = 0.01. The supervised losses—cross
entropy and mean squared errors—are only enforced on the occupied voxels. Concretely, the masked
supervised loss consists of a discrete cross entropy and continuous mean-squared error loss:

Lsup =
1

Nocc

∑
p∈G

M(p)
[
λ · CE(ℓ̂(p), ℓGT (p)) + (Ê(p)− EGT (p))2

+ (ν̂(p)− νGT (p))2 + (d̂(p)− dGT (p))2
]
,

(2)

where Nocc =
∑

p∈G M(p) is the total number of occupied voxels in the grid, ℓ̂(p) and ℓGT (p) are
the predicted material class logits and the ground-truth, CE is the cross entropy loss, λ is a loss
balancing factor, and E, ν, d are the Young’s modulus, Poisson’s ratio and density values, respectively.

Physics Simulation We use the Material Point Method (MPM) to simulate physics. The MPM
solver (Sec. A.3) takes a point cloud of initial particle poses along with predicted material properties,
and the external force specification, and simulates the particles’ transformations and deformations.
Although it is possible to sample particles from a NeRF model (e.g., via Poisson disk sampling [10]),
we have found that it is easier to use a Gaussian Splatting model (Sec. A) as each Gaussian can
naturally be thought of as a MPM particle [41]. Thus, we separately learn a Gaussian splatting model
from posed multi-view RGB images. We then transfer the material properties from our predicted
material grid into the Gaussian splatting model via nearest neighbor interpolation.

3.2 PIXIEVERSE Dataset

We collect one of the largest and highest quality known datasets of diverse objects with annotated
physical materials. Our dataset (Fig. 3) covers 10 semantic classes, ranging from organic matter (trees,

5

Figure 4: Main VLM Results. (a) VLM score versus wall-clock time: PIXIE is three orders of
magnitude faster than previous works while achieving 1.46-4.39x improvement in realism. Test-time
optimization methods are run with varying numbers of epochs i.e., 1, 25, 50 for DreamPhysics and
1, 2, 5 for OmniPhysGS while inference methods are only run once. (b) Per-class VLM score: Our
method leads on most object classes. Standard errors are also included.

shrubs, grass, flowers) and granular media (sand, snow and mud) to hollow containers (soda-cans,
metal crates), and toys (rubber ducks, sport balls). The dataset is sourced from Objaverse [8], the
largest open-source dataset of 3D assets. Since Objaverse objects do not have physical parameter
annotations, we develop an semi-automatic multi-stage labeling pipeline leveraging foundation
vision-language models i.e., Gemini-2.5-Pro [36], distilled CLIP feature field [21] and manually
tuned in-context physics examples. The full details is given in Appendix B and C.

4 Experiments

Dataset We train PIXIE on the PIXIEVERSE dataset and evaluate on 38 synthetic scenes from the
test set and six real-world scene from the NeRF [28], LERF [19] datasets, and Spring-Gaus [45].

Simulation Details We use the material point method (MPM) implementation from PhysGaussian
[41] as the physics solver. The solver takes a gaussian splatting model augmented with physics
where each Gaussian particle also has a discrete material model ID, and continuous Young’s modulus,
Poisson’s ratio, and density values. Each simulation is run for around 50 to 125 frames on a single
NVIDIA RTX A6000 GPU. External forces such as gravity and wind are applied to the static scenes
as boundary conditions to create physics animations.

Baselines We evaluate PIXIE against two recent test-time optimization methods: DreamPhysics
[14] and OmniPhysGS [26], and a LLM method – NeRF2Physics [42]. DreamPhysics optimizes
a Young’s modulus field, requiring users to specify other values including material ID, Poisson’s
ratio, and density. OmniPhysGS, on the other hand, selects a hyperelastic energy density function and
a return mapping model, which, in combination, specifies a material ID for each point in the field,
requiring other physics parameters to be manually specified. Both methods rely on a user prompt such
as "a tree swing in the wind" and a generative video diffusion model to optimize a motion distillation
loss. PIXIE, in contrast, infers all discrete and continuous parameters jointly (Fig. 16). NeRF2Physics
first captions the scene and query a LLM for all plausible material types (e.g., “metal") along with
the associated continuous values. Then, the material semantic names are associated with 3D points
in the CLIP feature field, and physical properties are thus assigned via weighted similarities. This
method is similar to our dataset labeling in principle with some crucial differences as detailed in
Appendix B and C, allowing PIXIEVERSE to have much more high-quality labels. PIXIE was trained
on 12 NVIDIA RTX A6000 GPUs, each with a batch size of 4, in one day using the Adam optimizer
[20] while prior test-time methods do not require training. For training PIXIE and computing metrics,
we apply a log transform to E and ρ, and normalize all logE, ν, log ρ values to [−1, 1] based on
max/min statistics from PIXIEVERSE.

Evaluation Metrics We utilize a state-of-the-art vision-language model, Gemini-2.5-Pro [36] as
the judge. The models are prompted to compare the rendered candidate animations generated using
physics parameters predicted by different baselines, and score those videos on a scale from 0 to 5,
where a higher score is better. The prompt is in Appendix D. We also measure the reconstruction
quality using PSNR and SSIM metric against the reference videos in the PIXIEVERSE dataset, which
are manually verified by humans for quality control. Other metrics our method optimizes including
class accuracy and continuous errors over E, ν, ρ are also computed.

6

Table 1: Main Quantitative Results. We report the average reconstruction quality (PSNR, SSIM)
against the reference videos in PIXIEVERSE, the VLM score, and five other metrics our method
optimizes including material accuracy and continuous errors over E, ν, ρ. Standard errors and 95% CI
are also included, and best values are bolded. PIXIE-CLIP is by far the best method across all metrics,
achieving 1.62-5.91x improvement in VLM score and 3.6-30.3% gains in PSNR and SSIM. Our CLIP
variant is also notably more accurate than RGB and occupancy features as measured by material class
accuracy and average continuous MSE on the test set. While our method simultaneously recovers all
physical properties, some prior works only predict a subset, hence -.

Method PSNR ↑ SSIM ↑ VLM ↑ Mat. Acc. ↑ Avg. Cont. MSE ↓ logE err ↓ ν err ↓ log ρ err ↓
DreamPhysics [14]

1 epoch 19.398±1.090 0.880±0.020 2.97±0.31 - - 2.393±0.123 - -
25 epochs 19.078±0.939 0.881±0.019 2.68±0.24 - - 1.419±0.097 - -
50 epochs 19.189±0.980 0.880±0.020 2.53±0.24 - - 1.387±0.097 - -

OmniPhysGS [26]
1 epoch 17.907±0.359 0.882±0.007 0.74±0.10 0.072±0.0511 - - - -
2 epochs 17.889±0.372 0.882±0.007 1.23±0.19 0.109±0.0704 - - - -
5 epochs 17.842±0.354 0.883±0.007 0.99±0.12 0.104±0.0681 - - - -

NeRF2Physics [42] 18.517±0.644 0.886±0.013 1.09±0.28 0.274±0.001 0.858±0.109 1.115±0.165 0.462±0.106 0.997±0.162

PIXIE
Occupancy 17.887±1.524 0.866±0.027 1.76±0.41 0.643±0.052 0.126±0.012 0.149±0.023 0.124±0.014 0.105±0.015
RGB 18.652±2.031 0.861±0.035 2.53±0.46 0.722±0.061 0.106±0.015 0.196±0.032 0.079±0.012 0.045±0.014
CLIP (ours) 23.256±2.456 0.918±0.023 4.35±0.08 0.985±0.011 0.056±0.005 0.022±0.004 0.034±0.006 0.112±0.009

4.1 Synthetic Scene Experiments

Figure 4 (a) plots Gemini score versus runtime. PIXIE achieves a VLM realism score of 4.35 ± 0.08 –
a 1.46-4.39x improvement over all baselines and tops all other metrics – while reducing inference
time from minutes or hours to 2 s. A per-class breakdown in Fig. 4 (b) shows our lead in most classes.
In Table 1, our model improves perceptual metrics such as PSNR and SSIM by 3.6−30.3% and VLM
scores by 2.21− 4.58x over prior works. Figure 5 visualises eight representative scenes, comparing
PIXIE against prior works. DreamPhysics leaves stiff artifacts due to missegmentation or overly
high predicted E values, OmniPhysGS collapses under force, and NeRF2Physics introduces high-
frequency noise, whereas PIXIE generates smooth, class-consistent motion and segment boundaries.
In the appendix, Figure 16 qualitatively visualizes the physical properties predicted by our network,
showing PIXIE’s ability to cleanly and accurately recover both discrete and continuous parameters
across a diverse sets of objects and continuous value spectrum. In contrast, some prior methods can
only recover a subset of parameters like E or material class.

4.2 Zero-shot Generalization to Real-World Scenes

Without any real-scene supervision, PIXIE can zero-shot generalize to many real-world scenes as
shown in Fig. 6. For example, our method correctly assigns rigid vase bases and flexible leaves,
yielding realistic motion that closely matches human expectation. Our method is surprisingly
performant despite significant and non-trivial visual gaps between the training synthetic data versus
the out-of-distribution real-world scenes. No other baseline can generalize under this setting.

4.3 PIXIE’s Feature Type Ablation

Replacing CLIP with RGB or occupancy features drops VLM score by 40-60 % and nearly doubles
parameter MSE (Table 1, rows “Occupancy” and “RGB”). We provide more results in the Appendix.
Specifically, we show that the material class prediction also dramatically drops across all classes
as shown in Fig. 17. Figure 18 shows the failure modes for real scenes, highlighting RGB and
occupancy’s struggle to generalize to unseen data as compared to CLIP.

5 Conclusion and Limitations

We presented PIXIE, a framework that jointly reconstructs geometry, appearance, and explicit physical
material fields from posed RGB images. By distilling rich CLIP features into 3D and training a
feed-forward 3D U-Net with per-voxel material supervision on our new PIXIEVERSE dataset, PIXIE
avoids the expensive test-time optimization required by prior work. Once trained, it produces full
material fields in a few seconds, improving Gemini realism scores by 1.46-4.39x over DreamPhysics
and OmniPhysGS while reducing inference time by three orders of magnitude. PIXIE leverages

7

Figure 5: Qualitative comparison on synthetic scenes. We visualized the predicted material class
and E predictions (left, right respectively) for PIXIE and Nerf2Physics, E for DreamPhysics (right),
and the plasticity and hyperelastic function classes predicted by OmniPhysGS. PIXIE produces stable,
physically plausible motion while DreamPhysics remains overly stiff due to inaccurate fine-grained
E prediction or too high E (e.g., see tree (C)), OmniPhysGS collapses under load due to unrealistic
combination of plasticity and hyperelastic functions, and NeRF2Physics exhibits noisy artifacts.
Please see https://pixie-3d.github.io/for the videos.

CLIP’s strong visual priors, which enables zero-shot transfer to real scenes, even though it is only
trained on synthetic data. The method enables realistic, physically plausible 3D scene animation with
off-the-shelf MPM solvers.

Limitations We take the first step towards learning a supervised 3D model for physical material
prediction. Like prior art, our work focuses on single object interaction leaving multi-object scenes
for future investigation. Another limitation is that while our UNet predict a point estimate for each
voxel, materials in the real-world contain uncertainty that visual information alone cannot resolve
(e.g., a tree can be stiff or flexible). A promising extension is to learn a distribution of materials (e.g.,
using diffusion) instead.

8

https://pixie-3d.github.io/

Material class E

Figure 6: PIXIE’s Zero-shot Real-scene Generalization. Trained only on synthetic PIXIEVERSE,
PIXIE can predict plausible physic properties, enabling realistic MPM simulation of real scenes.
Here, we visualize the material types (left) and Young’s modulus (right) prediction in the first
frame, and subsequent frames impacted by a wind force. Please see the videos in our website
https://pixie-3d.github.io/.

9

https://pixie-3d.github.io/

References
[1] Jad Abou-Chakra, Krishan Rana, Feras Dayoub, and Niko Suenderhauf. Physically embodied

gaussian splatting: A realtime correctable world model for robotics. In 8th Annual Conference
on Robot Learning, 2024. URL https://openreview.net/forum?id=AEq0onGrN2.

[2] Daniel M Bear, Elias Wang, Damian Mrowca, Felix J Binder, Hsiao-Yu Fish Tung, RT Pramod,
Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, et al. Physion: Evaluating physical
prediction from vision in humans and machines. arXiv preprint arXiv:2106.08261, 2021.

[3] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recognition in the wild
with the materials in context database. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3479–3487, 2015.

[4] Ziang Cao, Zhaoxi Chen, Liang Pan, and Ziwei Liu. Physx: Physical-grounded 3d asset
generation. arXiv preprint arXiv:2507.12465, 2025.

[5] Boyuan Chen, Hanxiao Jiang, Shaowei Liu, Saurabh Gupta, Yunzhu Li, Hao Zhao, and Shenlong
Wang. Physgen3d: Crafting a miniature interactive world from a single image. arXiv preprint
arXiv:2503.20746, 2025.

[6] Chuhao Chen, Zhiyang Dou, Chen Wang, Yiming Huang, Anjun Chen, Qiao Feng, Jiatao Gu,
and Lingjie Liu. Vid2sim: Generalizable, video-based reconstruction of appearance, geometry
and physics for mesh-free simulation. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2025.

[7] Xi Chen, Zhifei Zhang, He Zhang, Yuqian Zhou, Soo Ye Kim, Qing Liu, Yijun Li, Jianming
Zhang, Nanxuan Zhao, Yilin Wang, et al. Unireal: Universal image generation and editing via
learning real-world dynamics. arXiv preprint arXiv:2412.07774, 2024.

[8] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt,
Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe
of annotated 3d objects, 2022. URL https://arxiv.org/abs/2212.08051.

[9] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[10] Yutao Feng, Yintong Shang, Xuan Li, Tianjia Shao, Chenfanfu Jiang, and Yin Yang. Pie-nerf:
Physics-based interactive elastodynamics with nerf, 2023.

[11] Michael Fischer, Iliyan Georgiev, Thibault Groueix, Vladimir G Kim, Tobias Ritschel, and
Valentin Deschaintre. Sama: Material-aware 3d selection and segmentation. arXiv preprint
arXiv:2411.19322, 2024.

[12] Minghao Guo, Bohan Wang, Pingchuan Ma, Tianyuan Zhang, Crystal Elaine Owens, Chuang
Gan, Joshua B. Tenenbaum, Kaiming He, and Wojciech Matusik. Physically compatible 3d
object modeling from a single image. arXiv preprint arXiv:2405.20510, 2024.

[13] Hao-Yu Hsu, Zhi-Hao Lin, Albert Zhai, Hongchi Xia, and Shenlong Wang. Autovfx: Physically
realistic video editing from natural language instructions. arXiv preprint arXiv:2411.02394,
2024.

[14] Tianyu Huang, Yihan Zeng, Hui Li, Wangmeng Zuo, and Rynson WH Lau. Dreamphysics:
Learning physical properties of dynamic 3d gaussians with video diffusion priors. arXiv preprint
arXiv:2406.01476, 2024.

[15] Krishna Murthy Jatavallabhula, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini,
Martin Weiss, Breandan Considine, Jerome Parent-Levesque, Kevin Xie, Kenny Erleben, Liam
Paull, Florian Shkurti, Derek Nowrouzezahrai, and Sanja Fidler. gradsim: Differentiable
simulation for system identification and visuomotor control. International Conference on
Learning Representations (ICLR), 2021. URL https://openreview.net/forum?id=c_
E8kFWfhp0.

10

https://openreview.net/forum?id=AEq0onGrN2
https://arxiv.org/abs/2212.08051
https://openreview.net/forum?id=c_E8kFWfhp0
https://openreview.net/forum?id=c_E8kFWfhp0

[16] Hanxiao Jiang, Hao-Yu Hsu, Kaifeng Zhang, Hsin-Ni Yu, Shenlong Wang, and Yunzhu Li.
Phystwin: Physics-informed reconstruction and simulation of deformable objects from videos.
arXiv preprint arXiv:2503.17973, 2025.

[17] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and
Christian Rupprecht. Cotracker: It is better to track together. In European Conference on
Computer Vision, pages 18–35. Springer, 2024.

[18] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

[19] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf:
Language embedded radiance fields. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 19729–19739, 2023.

[20] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[21] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing nerf for editing via
feature field distillation. In Advances in Neural Information Processing Systems, volume 35,
2022. URL https://arxiv.org/pdf/2205.15585.pdf.

[22] Long Le, Jason Xie, William Liang, Hung-Ju Wang, Yue Yang, Yecheng Jason Ma, Kyle Vedder,
Arjun Krishna, Dinesh Jayaraman, and Eric Eaton. Articulate-anything: Automatic modeling of
articulated objects via a vision-language foundation model. arXiv preprint arXiv:2410.13882,
2024.

[23] Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Krishna Murthy Jatavallabhula, Ming Lin, Chen-
fanfu Jiang, and Chuang Gan. PAC-neRF: Physics augmented continuum neural radiance fields
for geometry-agnostic system identification. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=tVkrbkz42vc.

[24] Zhengqi Li, Richard Tucker, Noah Snavely, and Aleksander Holynski. Generative image
dynamics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 24142–24153, 2024.

[25] Zizhang Li, Hong-Xing Yu, Wei Liu, Yin Yang, Charles Herrmann, Gordon Wetzstein, and
Jiajun Wu. Wonderplay: Dynamic 3d scene generation from a single image and actions. arXiv
preprint arXiv:2505.18151, 2025.

[26] Yuchen Lin, Chenguo Lin, Jianjin Xu, and Yadong MU. OmniphysGS: 3d constitutive gaussians
for general physics-based dynamics generation. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=9HZtP6I5lv.

[27] Pingchuan Ma, Peter Yichen Chen, Bolei Deng, Joshua B Tenenbaum, Tao Du, Chuang Gan, and
Wojciech Matusik. Learning neural constitutive laws from motion observations for generalizable
pde dynamics. In International Conference on Machine Learning, pages 23279–23300. PMLR,
2023.

[28] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99–106, 2021.

[29] Himangi Mittal, Peiye Zhuang, Hsin-Ying Lee, and Shubham Tulsiani. Uniphy: Learning a
unified constitutive model for inverse physics simulation. arXiv preprint arXiv:2505.16971,
2025.

[30] Jack Parker-Holder, Philip Ball, Jake Bruce, Vibhavari Dasagi, Kristian Holsheimer,
Christos Kaplanis, Alexandre Moufarek, Guy Scully, Jeremy Shar, Jimmy Shi, Stephen
Spencer, Jessica Yung, Michael Dennis, Sultan Kenjeyev, Shangbang Long, Vlad Mnih,
Harris Chan, Maxime Gazeau, Bonnie Li, Fabio Pardo, Luyu Wang, Lei Zhang, Fred-
eric Besse, Tim Harley, Anna Mitenkova, Jane Wang, Jeff Clune, Demis Hassabis, Raia
Hadsell, Adrian Bolton, Satinder Singh, and Tim Rocktäschel. Genie 2: A large-scale
foundation world model. 2024. URL https://deepmind.google/discover/blog/
genie-2-a-large-scale-foundation-world-model/.

11

https://arxiv.org/pdf/2205.15585.pdf
https://openreview.net/forum?id=tVkrbkz42vc
https://openreview.net/forum?id=9HZtP6I5lv
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/

[31] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-NeRF:
Neural Radiance Fields for Dynamic Scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020.

[32] Ri-Zhao Qiu, Ge Yang, Weijia Zeng, and Xiaolong Wang. Feature splatting: Language-driven
physics-based scene synthesis and editing. arXiv preprint arXiv:2404.01223, 2024.

[33] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PmLR, 2021.

[34] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[35] William Shen, Ge Yang, Alan Yu, Jansen Wong, Leslie Pack Kaelbling, and Phillip Isola.
Distilled feature fields enable few-shot language-guided manipulation, 2023. URL https:
//arxiv.org/abs/2308.07931.

[36] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[37] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are
data-efficient learners for self-supervised video pre-training. Advances in neural information
processing systems, 35:10078–10093, 2022.

[38] Chen Wang, Chuhao Chen, Yiming Huang, Zhiyang Dou, Yuan Liu, Jiatao Gu, and Lingjie Liu.
Physctrl: Generative physics for controllable and physics-grounded video generation. In arXiv
preprint, 2025.

[39] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep
self-attention distillation for task-agnostic compression of pre-trained transformers. Advances
in neural information processing systems, 33:5776–5788, 2020.

[40] Hongchi Xia, Zhi-Hao Lin, Wei-Chiu Ma, and Shenlong Wang. Video2game: Real-time,
interactive, realistic and browser-compatible environment from a single video, 2024.

[41] Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu
Jiang. Physgaussian: Physics-integrated 3d gaussians for generative dynamics. arXiv preprint
arXiv:2311.12198, 2023.

[42] Albert J Zhai, Yuan Shen, Emily Y Chen, Gloria X Wang, Xinlei Wang, Sheng Wang, Kaiyu
Guan, and Shenlong Wang. Physical property understanding from language-embedded feature
fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 28296–28305, 2024.

[43] Kaifeng Zhang, Baoyu Li, Kris Hauser, and Yunzhu Li. Particle-grid neural dynamics for
learning deformable object models from rgb-d videos. arXiv preprint arXiv:2506.15680, 2025.

[44] Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y. Feng, Changxi Zheng, Noah Snavely,
Jiajun Wu, and William T. Freeman. PhysDreamer: Physics-based interaction with 3d objects
via video generation. In European Conference on Computer Vision. Springer, 2024.

[45] Licheng Zhong, Hong-Xing Yu, Jiajun Wu, and Yunzhu Li. Reconstruction and simulation
of elastic objects with spring-mass 3d gaussians. European Conference on Computer Vision
(ECCV), 2024.

12

https://arxiv.org/abs/2308.07931
https://arxiv.org/abs/2308.07931

A Preliminaries

This section briefly reviews foundational concepts in 3D scene representation and physics modeling
relevant to our work.

A.1 Learned Scene Representation

Reconstructing 3D scenes from 2D images is commonly achieved by learning a parameterized
representation, Fθ, optimized to render novel views that match observed images {I(i)}Mi=1 given
camera parameters {π(i)}Mi=1. This typically involves minimizing a photometric loss:

min
θ

M∑
i=1

∥∥∥Î(i)(θ)− I(i)
∥∥∥2
2

,

where Î(i)(θ) is the image rendered from viewpoint i. Two prominent representations are Neural
Radiance Fields (NeRF) and Gaussian Splatting (GS) models.

Neural Radiance Fields (NeRF) [28] model a scene as a continuous function Fθ : (x,d) 7→ (c, σ),
mapping a 3D location x and viewing direction d to an emitted color c and volume density σ. Images
are synthesized using volume rendering, integrating color and density along camera rays. This
process’ differentiability allows for end-to-end optimization from images.

Gaussian Splatting (GS) [18] represents scenes as a collection of 3D Gaussian primitives, each
defined by a center µi, covariance Σi, color ci, and opacity αi. These Gaussians are projected onto
the image plane and blended using alpha compositing to render views.

In our work, the principles of neural scene representation, particularly NeRF-like architectures, are
leveraged not only for visual reconstruction but also for creating dense 3D visual feature fields. As
detailed in Sec. 3.1, we utilize a NeRF-based model to distill 2D image features (e.g., from CLIP)
into a volumetric 3D feature grid. This 3D feature representation, FG, then serves as the primary
input to our physics prediction network. For subsequent physics simulation, GS offers a convenient
particle-based representation.

A.2 3D Visual Feature Distillation Details

Following [35], we augment the NeRF mapping to produce features f alongside color c and density
σ:

Fθ : (x,d) 7→
(
f(x), c(x,d), σ(x)

)
.

Given a camera ray r(t) = o + td passing through pixel p, color C(p) and features F (p) are
volume-rendered as

C(p) =

∫ tf

tn

T (t)σ
(
r(t)

)
c
(
r(t),d

)
dt, F (p) =

∫ tf

tn

T (t)σ
(
r(t)

)
f
(
r(t)

)
dt, (3)

where T (t) = exp
(
−
∫ t

tn
σ(r(s)) ds

)
is the accumulated transmittance from the ray origin to depth

t. At each training iteration, a batch of rays is sampled from the input views. For each ray r (pixel
p), we enforce that the rendered color C(p) matches the ground-truth pixel RGB C∗(p), while the
rendered feature F (p) matches the corresponding CLIP-based feature vector F ∗(p) extracted from
the image. The loss of the network is:

L =
∑
p

∥∥C(p)− C∗(p)
∥∥2
2
+ λfeat

∑
p

∥∥F (p)− F ∗(p)
∥∥2
2
;

the first term enforces color fidelity, while the second aligns the rendered volumetric CLIP features
with the dense 2D features extracted from the training images.

From a trained distilled feature field Fθ, we obtain a regular feature grid FG of dimension N ×N ×
N ×D grid, where N = 64 is the grid size and D = 768 is the CLIP feature dimension. This is
done via voxelization using known scene bounds. For our synthetic dataset, we center and normalize
all objects within a unit cube.

13

A.3 Material Point Method (MPM) for Physics Simulation

To simulate how objects move and deform under applied forces, a physics engine requires knowledge
of their material properties. These properties are typically defined within the framework of continuum
mechanics, which describes the behavior of materials at a macroscopic level. The fundamental
equations of motion (conservation of mass and momentum) are:

ρ
Dv

Dt
= ∇ · σ + f ext ∇ · v = 0 , (4)

where ρ is mass density, v the velocity field, σ the Cauchy stress tensor, and f ext any external force
(e.g. gravity or user interactions). The material-specific constitutive laws define how σ depends on
the local deformation gradient F. For elastic materials, stress depends purely on the recoverable
strain; for plastic materials, a yield condition enforces partial “flow” once strain exceeds a threshold.

Constitutive Laws and Parameters Most continuum simulations separate the constitutive model
into two core components:

Eµ : Fe 7→ P,

Pµ : F e,trial 7→ F e,new ,
(5)

where Fe is the elastic portion of the deformation gradient, P is the (First) Piola–Kirchhoff stress, and
µ represents the set of material parameters (e.g. Young’s modulus E, Poisson’s ratio ν, yield stress).
The elastic law Eµ computes stress from the current elastic deformation, while the return-mapping
Pµ projects any “trial” elastic update F e,trial onto the feasible yield surface if plastic flow is triggered.
Typically, the constitutive laws i.e., Eµ and Pµ are hand-designed by domain experts. The choice of E
and P jointly define a class of material (e.g., rubber). Within a material class, additional continuous
parameters µ including Young’s modulus, Poisson’s ratio and density can be specified for a more
granular control of the material properties (e.g., stiffness of rubber). In our work, PIXIE jointly
predicts the discrete material model and the continuous material parameters.

B PIXIEVERSE Dataset Details

We heavily curate the dataset to a set of 1624 objects after a multi-stage filter that removes multi-object
scenes, missing textures, duplicated assets, and objects whose material labeling is either ambiguous or
physically implausible. The process is semi-automatic with a VLM-driven multi-stage pipeline while
still imparting substantial human prior and labor. We manually tune the physics parameter ranges for
each semantic class (e.g., “tree", “rubber toy") and 3D segmentation query terms, and provide these
as in-context examples for the VLM to align them with human’s physical understanding.

First, we define some object class (e.g., “tree") and some alternative query terms (e.g., “ficus, fern,
evergreen etc"). We then use a sentence transformer model [39] to compute the cosine similarity
between the search terms and the name of each Objaverse object. We select k = 500 objects with the
highest similarity score for each class, creating an initial candidate pool. However, since Objaverse
objects vary greatly in asset quality, lighting conditions, and some scenes contain multiple objects
which are not suitable for our material learning, an additional filtering step is needed. The Gemini
VLM is prompted to filter out low-quality or unsuitable scenes. A distilled NeRF model is fitted to
each object. Then, the VLM is provided five multi-view RGB images of an object, and prompted
to provide a list of the object’s semantic parts along with associated material class and ranges for
continuous values. The ranges such as E ∈ {1e4, 1e5} allow us to simulate a wider range of dynamics
from flexible to more rigid trees. The VLM is also prompted to specify a list of constraints such as to
ensure that the leaf’s density is lower than the trunk’s. We then sample the continuous values from
the VLM’s specified ranges subject to the constraint via rejection sampling. The semantic parts (e.g.,
“pot") are used with the CLIP distilled feature field to compute a 3D semantic segmentation of the
object into parts, and the sampled material properties are applied uniformly to all points within a
part. This ground-truth material and feature fields are then voxelized into regular grids for use in
supervised learning by the PIXIE framework.

The following sections provide more details on each step of our semi-automatic labeling process.

14

tree: tree, ficus, fern, oak tree, pine tree, evergreen, palm tree, maple tree,
bonsai tree
flowers: flower, bouquet, rose, tulip, daisy, lily, sunflower, orchid, flower
arrangement, flowering plant, garden flowers, wildflowers, floral
rubber_ducks_and_toys: rubber duck, bath toy, rubber toy, toy duck, squeaky toy,
floating toy, plastic duck, children’s bath toy, yellow duck toy, rubber animal
toy
soda_cans: soda can, aluminum can, beverage can, cola can, soft drink can, metal
can, canned drink, pop can, fizzy drink can
sport_balls: basketball, soccer ball, football, tennis ball, baseball, volleyball,
golf ball, rugby ball, ping pong ball, cricket ball, bowling ball, beach ball,

sports ball
sand: sand, beach sand, desert sand, sandy terrain, sand pile, sand dune, sandpit,
sand box, sand texture, grainy sand

shrubs: shrub, bush, hedge, ornamental bush, garden shrub, boxwood, flowering
bush, evergreen shrub, decorative plant, landscaping shrub
metal_crates: metal crate, steel box, metal container, shipping crate, metal
storage box, industrial container, metal chest, storage crate, metallic box
grass: grass, lawn, turf, grassland, meadow, grassy field, green grass, grass
patch, tall grass, wild grass, pasture
snow_and_mud: snow, mud, snowy ground, muddy ground, wet mud, fresh snow, packed
snow, snowy terrain, muddy terrain, snow patch, mud puddle, snowdrift, muddy path,
snowy surface, muddy surface, slush, wet snow, dirty snow, muddy water, snowy

landscape

Figure 7: Objaverse Class Selection Keywords. The keywords for matching a semantic class with
an objaverse asset’s name.

B.1 Object Selection from Objaverse

We use the all-MiniLM-L6-v2 [39] sentence transformer to compute the cosine similarity between an
objaverse asset’s name and some search terms for each object class. The search terms are in Fig. 7.
The top k = 500 objects with the highest similarity score are selected for each class.

B.2 Object Filtering

Next, we prompt Gemini to filter out low-quality assets. The system instruction is given in Fig. 8.
Then, a human quickly scans through the VLM results organized in our web interface as shown in
Fig. 9 to correct any mistakes.

B.3 CLIP-Driven 3D Semantic Segmentation

From a distilled CLIP feature field of the object [35], we can perform 3D semantic segmentation
by providing a list of the object’s parts (e.g., “pot, trunk, leaves"). These query terms are used to
compute the cosine similarity between each CLIP feature at a given 3D coordinate against the terms,
and the part with highest similarity is assigned to that point. The choices of query terms (e.g., “pot,
trunk, leaves" vs “base, stem, leaf") greatly affect the segmentation quality, and is not obvious. A
high-performing query list in one object is not guaranteed to yield high performance in another object,
e.g., see Fig. 10. Thus, we prompt a VLM actor to generate several candidate queries for each object,
render all candidates, and prompt another VLM critic to select the best query terms from the rendered
3D segmentation images, as detailed Sec. B.4.

B.4 VLM Actor-Critic Labeling

Current VLMs might not have robust physical understanding for generating high-quality labels for
PIXIEVERSE zeroshot. Thus, we first manually tune the physic parameters for each semantic object
class (e.g., “tree", “rubber toy"). A condensed version of these examples is provided in Fig. 12. We
also provide examples of different search terms (e.g., “pot, trunk, leaves" vs “base, stem, leaf"). These

15

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

We need to select some images of the classes: {class_name}. This class includes
objects like {search_terms}. We will provide you some images rendered from the 3D
model. You need to either return True or False. Return False to reject the image
as inappropriate for the video game development. Some common reasons for

rejection:
− The image doesn’t clearly depict the object class
− The image is too dark or too bright or too blurry or has some other low

quality.
Remember, we want high−quality training data.

− The image contains other things in addition to the object.
REMEMBER, we only want images that depict cleanly ONE SINGLE OBJECT belonging to
one of the classes. But you also need to use your common sense and best judgement.
For example, for a class like "flowers", the object might include a vase of

flowers (you rarely see a single flower in the wild). So you should return True
in this case.

− We do want diversity in our dataset collection. So even if the texture of the
object is a bit unusual, as long as you can recognize it as belonging to the

class / search terms, you should return True. Only remove low−quality assets.

The return format is:
‘‘‘json
{
"is_appropriate": true (or false),
"reason": "reason for the decision"

}
‘‘‘
We’ll be using the 3d models to learn physic parameters like material and young
modulus to simulate the physics of the object. E.g., the tree swaying in the wind
or thing being dropped from a height. Therefore, you need to decide if the image
depicts an object that is likely to be used in a physics simulation.

Figure 8: Object Filtering System Prompt. Prompt for VLM to filter out low-quality assets.

in-context examples are provided to a VLM actor that simultaneously proposes physics parameters
and semantic segmentatic queries for that object from multi-view images of that object as illustrated
in Fig. 11. The full system prompt for the VLM is provided in Fig. 13 and the full in-context examples
in Listing 1. We render an image representing 3D semantic segmentation masks for each query
proposal as shown in Fig. 10. A VLM critic is then prompted to select the best segmentation queries
from the rendered images. The critic’s system prompt is provided in Fig. 14.

Additionally, materials in the real-world contain uncertainty that visual information alone cannot
resolve (e.g., a tree can range from stiff to flexible). Thus, instead of specifying one physics parameter
per part, we prompt the VLM actor to output a plausible range (e.g., E ∈ {1e4, 1e5} see Fig. 11, 12).
We then sample a value uniformly from each range to build our training dataset. To further ensure
that the sampled values are consistent, the VLM is also prompted to specify a list of constraints (e.g.,
the density of leaves must be lower than that of the trunk). Rejection sampling is used to ensure that
the final dataset respects the constraints.

16

Figure 9: Manual correction for object filtering. The web interface for quickly inspecting and
manually correcting VLM results.

17

Figure 10: CLIP Semantic Segmentation. CLIP features can be noisy for various objects and
different text queries vary greatly in segmentation quality. Thus, we prompt a VLM actor to generate
several candidate queries for each object, render all candidates, and prompt another VLM critic to
select the best query terms from the rendered 3D segmentation images. Some candidates are provided
and proposals chosen by the critic are highlighted. Note that a high-performing query proposal (e.g.,
“leaves,pot,trunk") in one object is not necessary high-performant in another. The PCA visualization
of the CLIP feature fields is also provided.

...

OUTPUTINPUT

"reasoning"

"constraints"

"all_queries"

: "The pot is made of a dense,
stiff material like ceramic or concrete, so
it's density and Young's modulus are high, and
it is stationary. The trunk and leaves are
made of a flexible material like wood and
foliage, so they are modeled as jelly with
lower density and Young's modulus. The leaves
are more flexible

 than the trunk, so their Young's modulus is
lower.", 
 : "assert
material_dict[\"pot\"][\"density\"] >
material_dict[\"trunk\"][\"density\"]\nassert
material_dict[\"trunk\"][\"density\"] >
material_dict[\"leaves\"][\"density\"]\nassert
material_dict[\"pot\"][\"E\"] >
material_dict[\"trunk\"][\"E\"]\nassert
material_dict[\"trunk\"][\"E\"] >
material_dict[\"leaves\"][\"E\"]", 
 : [ 
 [ 
 "pot", 
 "trunk", 
 "leaves" 
], 
 [ 
 "brown pot", 
 "brown trunk", 
 "green leaves" 
], 
 [ 
 "ceramic pot", 
 "wooden trunk", 
 "foliage" 
] 
] 
}

{ 
: { 

 "pot": { 
 "density": [ 
 1500, 2000 
], 
 "E": [ 
 1e8, 1e9  
], 
 "nu": [ 
 0.2, 0.3 
], 
 "material_id": 6 
 }, 
 "trunk": { 
 "density": [ 
 300, 500 
], 
 "E": [ 
 1e5,5e6 
], 
 "nu": [ 
 0.3, 0.4 
], 
 "material_id": 0 
 }, 
 "leaves": { 
 "density": [ 
 100, 300 
], 
 "E": [ 
 1e4, 5e5 
], 
 "nu": [ 
 0.3, 0.4 
], 
 "material_id": 0 
 } 
 }, 

 "material_dict"
The image are

please provide the segmentation terms and

physics outputs as instructed.

Figure 11: VLM Actor’s Physics and Segmentation Proposal.

18

tree:
pot: {density: 400, E: 2e8, nu: 0.4, material: "rigid"}
trunk: {density: 400, E: 2e6, nu: 0.4, material: "elastic"}
leaves: {density: 200, E: 2e4, nu: 0.4, material: "elastic"}

flowers:
vase: {density: 500, E: 1e6, nu: 0.3, material: "rigid"}
flowers: {density: 100, E: 1e4, nu: 0.4, material: "elastic"}

shrub:
stems: {density: 300, E: 1e5, nu: 0.35, material: "elastic"}
twigs: {density: 250, E: 6e4, nu: 0.38, material: "elastic"}
foliage: {density: 150, E: 2e4, nu: 0.40, material: "elastic"}

grass:
blades: {density: 80, E: 1e4, nu: 0.45, material: "elastic"}
soil (if visible): {density: 1200, E: 5e5, nu: 0.30, material: "rigid"}

rubber_ducks_and_toys:
toy: {density: [80, 150], E: [3e4, 5e4], nu: [0.4, 0.45], material: "elastic"}

sport_balls:
ball: {density: [80, 150], E: [3e4, 5e4], nu: [0.4, 0.45], material: "elastic"}

soda_cans:
can: {density: [2600, 2800], E: [5e10, 8e10], nu: [0.25, 0.35], material: "

metal"}

metal_crates:
crate: {density: [2500, 2900], E: [8e7, 1.2e8], nu: [0.25, 0.35], material: "

metal"}

sand:
sand: {density: [1800, 2200], E: [4e7, 6e7], nu: [0.25, 0.35], material: "sand"}

jello_block:
jello: {density: [40, 60], E: [800, 1200], nu: [0.25, 0.35], material: "elastic

"}

snow_and_mud:
snow_and_mud: {density: [2000, 3000], E: [8e4, 1.2e5], nu: [0.15, 0.25],

material: "snow"}

Figure 12: In-Context Physics Condensed Examples. Material properties for each object class used
in the VLM prompting. Density is in kg/m³, E (Young’s Modulus) is in Pa, nu (Poisson’s ratio) is
dimensionless.

19

We are trying to label a 3D object with physical properties. The physical
properties are:

− Density
− Young’s Modulus
− Poisson’s Ratio
− Material model

where the material model is one of the following: \{material_list_str\}
We have an automatic semantic segmentation model that can segment the object into
different parts. We’ll assume that each part has the same material model.

Your job is to come up with the part query to pass to the semantic segmentation
model, and the associated material properties for each part.

\{special_notes\}
For example, for a \{class_name_for_example\}, the return is

‘‘‘json
\{example_material_dict_str\}
‘‘‘
\{example_explanation\}

Note that there are many different valid values for the material properties
including E, nu, and density that would influence how the object behaves. Thus,
instead of actual values, you should return a range of values like "E": [2e4, 2e6
]. Also, provide reasoning and constraints on the values when appropriate.

So the output should be a json with the following format:

‘‘‘json
\{\{

"material_dict": \{\{ ... similar to example_dict with ranges ... \}\},
"reasoning": "...",
"constraints": "...",
"all_queries": "..."

\}\}
‘‘‘

Remember to write constraints in the form of python code. For example,
‘‘‘python

\{example_constraints_str\}
‘‘‘
Note that you’ve been asked to generate a material range so ‘material_dict["
leaves"]["density"]‘ is a range of values. But for the purpose of the constraints
writing, you can assume that the material_dict["leaves"]["density"] is a single
value, and generate the python code similar to the example above. This is
important because we will first sample a value from the range, then invoke your
constraints code. So instead of writing something like
‘‘‘python

assert material_dict["leaves"]["density"][0] ...
‘‘‘
you must write something like
‘‘‘python

assert material_dict["leaves"]["density"] ...
‘‘‘
Note that the correct code doesn’t have the bracket because ‘material_dict["
leaves"]["density"]‘ will be already reduced to a single value by our sampler.
You will be provided with images of the object from different views or a single
view. Please try your best to come up with appropriate part queries as well. For
example, if the object doesn’t have visible trunk or pot, then you should NOT
include them in the material_dict. Only segment parts that are visible in the
image.
Also, because our CLIP segmentation model is not perfect, you should come up with
alternative queries as well including the original queries in the all_queries
list. For example,

‘‘‘json
\{example_all_queries_str\}
‘‘‘

In total, you need to provide \{num_alternative_queries\} alternative queries.
Tips:
\{tips_str\}
− Make sure that each element in the ‘all_queries‘ list is in the exact same
order as the material_dict keys.

Figure 13: VLM Actor System Prompt.

20

You are a segmentation quality critic. Your task is to evaluate the quality of
segmentation results produced by a CLIP−based segmentation model.

You will be shown:
1. A set of original RGB images of a 3D object from different views
2. Segmentation results for different part queries

Your job is to:
1. Evaluate each segmentation query based on how well it separates the object
into meaningful parts
2. Score each query on a scale of 1−10 (10 being perfect)
3. Provide reasoning for your scores
4. Suggest improvements to the queries if needed

Consider the following factors in your evaluation:
− Does the segmentation properly separate the object into distinct, semantically
meaningful parts?

− Are the boundaries of the segments accurate and clean?
− Is any important part of the object missed or incorrectly segmented?
− IMPORTANT: note that our imperfect CLIP segmentation model is heavily
dependent on the choice of part queries. Thus,
even if a query might not be semantically correct, as long as it is useful for
separating the object into distinct parts,
you should score it high.
− Bad queries would result in bad segmentation that are noisy or different parts
are not correctly and/or clearly separated.

Your output should be a JSON in the following format:

‘‘‘json
{
"query_evaluations": {
"query_0": {
"score": 8,
"reasoning": "This query effectively separates the object into functionally

distinct parts. The boundaries are clean and consistent across different views."
},
"query_1": {
"score": 3,
"reasoning": "This query fails to distinguish important parts of the object,

making it unsuitable for physical property assignment."
},
...

},
"best_query": "query_1",
"suggested_improvements": "Consider using more specific terms like ’ceramic pot’
instead of just ’pot’ to improve segmentation boundaries."

}
‘‘‘
where ‘query_{i}‘ is the i−th query in the "all_queries" list.

Be detailed in your reasoning and make concrete suggestions for improvements.

Figure 14: VLM Critic System Prompt. System instruction for evaluating segmentation quality and
suggesting improvements.

21

Listing 1: In-context Physics Examples
{

"tree": {
"class_name_for_example ": "ficus tree",
"special_notes ": "",
"example_material_dict ": {

"pot": {" density ": 400, "E": 2e8, "nu": 0.4, "material_id
": get_material_id ("rigid ")},

"trunk": {" density ": 400, "E": 2e6 , "nu": 0.4, "
material_id ": get_material_id (" elastic ")},

"leaves ": {" density ": 200, "E": 2e4 , "nu": 0.4, "
material_id ": get_material_id (" elastic ")}

},
"example_explanation ": textwrap.dedent ("""

For this , we assume that the pot is stationary , while the
trunk and leaves are made of "elastic", which will make

them sway in the wind. The stiffness (Young ’s Modulus) of
the trunk is much higher than that of the leaves.

"""),
"example_all_queries ": [[" leaves", "trunk", "pot"], [" green",

"orange", "reddish -brown"]],
"tips": [

"In a scene , typically there ’s a stationary part that will
serve to fix the object to the ground. Usually , it ’s the pot , or

some base of the tree. You must set the material_id of the
stationary part to 6. If there ’s no stationary part , then never
mind.",

"The higher the ‘E‘ is, the stiffer the object is. E.g.,
so tree would sway less in the wind.",

]
},
"flowers ": {

"class_name_for_example ": "flowers in a vase",
"special_notes ": "",
"example_material_dict ": {

"vase": {" density ": 500, "E": 1e6, "nu": 0.3, "material_id
": get_material_id ("rigid ")},

"flowers ": {" density ": 100, "E": 1e4 , "nu": 0.4, "
material_id ": get_material_id (" elastic ")}

},
"example_explanation ": textwrap.dedent ("""

Here , the vase is designated as stationary (material_id =6)
, indicating it should not move or sway.

The flowers are set to a more pliable or flexible material
(like "elastic" = 0), so that they can sway

if there ’s wind or slight motion. The stiffness (Young ’s
Modulus) of the vase is much higher than that

of the flowers , making the vase rigid and the flowers more
flexible.

"""),
"example_all_queries ": [[" vase", "flowers"], [" ceramic base",

"petals"], ["blue vase", "pink flower "]],
"tips": [

"In a typical flower arrangement , the vase (or base) is
stationary , so give that part material_id =6 if present.",

"The higher the ‘E‘, the stiffer the part. So the vase
should have a higher E range than the flowers.",

]
},
"shrub": {

"class_name_for_example ": "typical three -part shrub",
"special_notes ": textwrap.dedent ("""
Dataset note: Shrubs in our dataset stand by themselves ---

there is no planter or base.

22

You should therefore return only the shrub ’s structural
parts and none of them are stationary.

"""),
"example_material_dict ": {

"stems": { "density ": 300, "E": 1e5, "nu": 0.35, "
material_id ": get_material_id (" elastic ") },

"twigs": { "density ": 250, "E": 6e4, "nu": 0.38, "
material_id ": get_material_id (" elastic ") },

"foliage ": { "density ": 150, "E": 2e4 , "nu": 0.40, "
material_id ": get_material_id (" elastic ") }

},
"example_explanation ": textwrap.dedent ("""

Return *ranges* instead of single values and accompany
them with reasoning , Pythonic

constraints , and alternative query lists.
"""),
"example_all_queries ": [

["stems", "twigs", "foliage"],
["woody stems", "thin branches", "leaves"],
["brown sticks", "small branches", "green leaves "]

],
"tips": [

"Provide exactly the parts visible (usually stems/twigs +
foliage).",

"1e4 <= E <= 1e6.",
"Stems should be stiffest > twigs > foliage.",
"No part uses material_id 6 because nothing is fixed to

the ground.",
]

},
"grass": {

"class_name_for_example ": "",
"special_notes ": textwrap.dedent ("""

** Dataset note :** Grass patches are usually isolated;
occasionally a visible soil patch is

underneath. Include a "soil" part only if it is visible.
"""),
"example_material_dict ": {

"blades ": { "density ": 80, "E": 1e4 , "nu": 0.45, "
material_id ": get_material_id (" elastic ") }

},
"example_explanation ": textwrap.dedent ("""

Example A (typical isolated grass ---no stationary part):
‘‘‘json
{

"blades ": { "density ": 80, "E": 1e4 , "nu": 0.45, "
material_id ": get_material_id (" elastic ") }

}
‘‘‘

Example B (grass with visible soil):
‘‘‘json
{

"soil": { "density ": 1200, "E": 5e5, "nu": 0.30, "
material_id ": get_material_id (" rigid ") },

"blades ": { "density ": 80, "E": 1e4, "nu": 0.45, "
material_id ": get_material_id (" elastic ") }

}
‘‘‘
Return *ranges*, reasoning , constraints , and alternative

query lists.
"""),
"example_all_queries ": [

[" blades"],
["grass"],

23

["green stalks "]
],
"tips": [

"Segment only the visible parts (sometimes just \" blades
\").",

"If *no* soil visible :\ nall_queries: [[\" blades \"] ,[\"
grass \"] ,[\" green stalks \"]]",

"If soil *is* visible :\ nall_queries: [[\" soil\", \" blades
\"] ,[\" dirt\", \"grass \"] ,[\" brown base\", \"green grass \"]]",

"1e4 <= E <= 1e6.",
"If soil present -> give it material_id 6 and ensure

E_soil > E_blades.",
"If soil absent -> no stationary part; material_id 6

should not appear.",
]

},
"rubber_ducks_and_toys ": {

"class_name_for_example ": "",
"special_notes ": textwrap.dedent ("""

IMPORTANT: For rubber ducks and toys , we want to treat the
entire object as a single part. Do not attempt to

segment it into multiple parts. The object should be
treated as a single , bouncy rubber -like object.

"""),
"example_material_dict ": {

"toy": {" density ": [80, 150], "E": [3e4 , 5e4], "nu": [0.4,
0.45], "material_id ": get_material_id (" elastic ")}

},
"example_explanation ": "",
"example_all_queries ": [[" toy"], [" rubber toy"], [" yellow duck

"], [" plastic toy"]],
"tips": [

"Always use material_id =0 (jelly) for bouncy rubber -like
behavior",

"Keep E relatively low (around 1e3) for good bounce",
"Density should be in the range of typical rubber/plastic

toys",
"Poisson ’s ratio should be around 0.35 for rubber -like

behavior",
"Make sure all queries in all_queries list are single -part

queries"
]

},
"sport_balls ": {

"class_name_for_example ": "",
"special_notes ": textwrap.dedent ("""

IMPORTANT: For sport balls , we want to treat the entire
ball as a single part. Do not attempt to

segment it into multiple parts (like surface patterns or
seams). The ball should be treated as a single ,

bouncy object.
"""),
"example_material_dict ": {

"ball": {" density ": [80, 150], "E": [3e4 , 5e4], "nu":
[0.4, 0.45] , "material_id ": get_material_id (" elastic ")}

},
"example_explanation ": "",
"example_all_queries ": [[" ball"], ["sport ball"], [" basketball

"], ["round ball"]],
"tips": [

"Always use material_id =0 (jelly) for bouncy behavior",
"Keep E relatively low (around 1e3) for good bounce",
"Density should be in the range of typical sport balls",
"Poisson ’s ratio should be around 0.35 for rubber -like

behavior",

24

"Make sure all queries in all_queries list are single -part
queries"

]
},
"soda_cans ": {

"class_name_for_example ": "",
"special_notes ": textwrap.dedent ("""

IMPORTANT: For soda cans , we want to treat the entire can
as a single part. Do not attempt to

segment it into multiple parts (like the top , body , or
label). The can should be treated as a single ,

rigid metal object.
"""),
"example_material_dict ": {

"can": {" density ": [2600, 2800] , "E": [5e10 , 8e10], "nu":
[0.25, 0.35] , "material_id ": get_material_id ("metal ")}

},
"example_explanation ": "",
"example_all_queries ": [[" can"], ["soda can"], [" aluminum can

"], ["metal can"]],
"tips": [

"Always use material_id =1 (metal) for rigid metal behavior
",

"Keep E relatively high (around 1e8) for metal stiffness",
"Density should be in the range of typical aluminum (

around 2700 kg/m^3)",
"Poisson ’s ratio should be around 0.3 for metal behavior",
"Make sure all queries in all_queries list are single -part

queries"
]

},
"metal_crates ": {

"class_name_for_example ": "",
"special_notes ": textwrap.dedent ("""

IMPORTANT: For metal crates , we want to treat the entire
crate as a single part. Do not attempt to

segment it into multiple parts (like the sides , top , or
bottom). The crate should be treated as a single ,

rigid metal object.
"""),
"example_material_dict ": {

"crate": {" density ": [2500, 2900] , "E": [8e7, 1.2e8], "nu
": [0.25 , 0.35], "material_id ": get_material_id (" metal")}

},
"example_explanation ": "",
"example_all_queries ": [[" crate"], ["metal crate"], ["metal

box"], ["steel crate"]],
"tips": [

"Always use material_id =1 (metal) for rigid metal behavior
",

"Keep E relatively high (around 1e8) for metal stiffness",
"Density should be in the range of typical metal (around

2700 kg/m^3)",
"Poisson ’s ratio should be around 0.3 for metal behavior",
"Make sure all queries in all_queries list are single -part

queries"
]

},
"sand": {

"class_name_for_example ": "",
"special_notes ": textwrap.dedent ("""

IMPORTANT: For sand objects , we want to treat the entire
object as a single part. Do not attempt to

segment it into multiple parts. The sand should be treated
as a single , granular material.

25

"""),
"example_material_dict ": {

"sand": {" density ": [1800, 2200] , "E": [4e7, 6e7], "nu":
[0.25, 0.35] , "material_id ": get_material_id ("sand")}

},
"example_explanation ": "",
"example_all_queries ": [[" sand"], ["sand pile"], ["sand mound

"], [" granular material "]],
"tips": [

"Always use material_id =2 (sand) for granular behavior",
"Keep E relatively high (around 5e7) for sand stiffness",
"Density should be in the range of typical sand (around

2000 kg/m^3)",
"Poisson ’s ratio should be around 0.3 for sand behavior",
"Make sure all queries in all_queries list are single -part

queries"
]

},
"jello_block ": {

"class_name_for_example ": "",
"special_notes ": textwrap.dedent ("""

IMPORTANT: For jello blocks , we want to treat the entire
object as a single part. Do not attempt to

segment it into multiple parts. The jello block should be
treated as a single , soft , bouncy object.

"""),
"example_material_dict ": {

"jello": {" density ": [40, 60], "E": [800, 1200] , "nu":
[0.25, 0.35] , "material_id ": get_material_id (" elastic ")}

},
"example_explanation ": "",
"example_all_queries ": [[" jello"], ["jello block"], [" gelatin

"], [" bouncy block "]],
"tips": [

"Always use material_id =0 (jelly) for soft , bouncy
behavior",

"Keep E relatively low (around 1000) for good bounce and
jiggle",

"Density should be in the range of typical jello (around
50 kg/m^3)",

"Poisson ’s ratio should be around 0.3 for jello -like
behavior",

"Make sure all queries in all_queries list are single -part
queries"

]
},
"snow_and_mud ": {

"class_name_for_example ": "",
"special_notes ": textwrap.dedent ("""

IMPORTANT: For combined snow & mud objects , we treat the
entire mixture as a single deformable part. Do **not**

attempt to split it into separate snow and mud regions ---
the simulation will use one MPM material.

"""),
"example_material_dict ": {

"snow_and_mud ": {" density ": [2000 , 3000], "E": [8e4, 1.2e5
], "nu": [0.15 , 0.25], "material_id ": get_material_id ("snow")}

},
"example_explanation ": "",
"example_all_queries ": [[" snow and mud"], ["slush"], [" muddy

snow"], ["wet snow"]],
"tips": [

"Always set material_id = 5 (snow) so the simulator uses
the appropriate elasto -plastic snow model.",

26

"Keep E around 1e5 (the config value) to match the
intended softness.",

"Density is markedly higher than fluffy snow because of
the mud/water content ---use roughly 2-3 g/cm^3 (2000 -3000 kg/m^3)
.",

"Make sure every list in ‘all_queries ‘ contains **one**
phrase because this is a single -part object ."

]
},

}

C The Effects of Human Prior on PIXIEVERSE

PIXIEVERSE is labeled via VLMs using in-conext physics examples manually tuned by humans. A
condensed version of these in-context examples is provided in Fig. 12 and the full prompt in Listing 1.
These examples align the VLM’s physical understanding with human’s. In our ablation result, we
found that removing these examples significantly results as shown in Tab. 2.

The main differences between PIXIEVERSE labeling and NeRF2Physics are

1. We use VLM to propose object-dependent segmentation while NeRF2Physics using LLM is
essentially blind. Specifically, ur VLM actor proposes segmentation queries based on a set of
mutli-view images of the object as shown in Fig. 11.

2. We use semantic proposals (e.g., "pot", "trunk") instead of material proposals (e.g., "leather",
"stone") like NeRF2Physics did. Computing similarity directly between material name and CLIP
features yields inaccurate and noisy segmentation as shown in Fig. 10. This also limits the
generality of the NeRF2Physics since one material type (e.g., “elastic") can only have a fixed set
of parameters in a scene. In contrast, PIXIE enables spatially-varying parameter specification: the
leaves and the trunk of a tree while both belonging to the same “elastic" class can have vastly
different young modulus, Poisson ratio and density as shown in Fig. 16.

3. We proposes multiple candidates (e.g., "pot,leaves" vs "base,folliage") and use a VLM critic
to select the best based on CLIP-based segmentation while NeRF2Physics does not have any
selection mechanism. Figure 10 show the dramatic segmentation quality across different queries,
highlighting the need for multiple candidates and selection.

4. We also provide manually tuned in-context physics parameter examples.

These crucial differences contribute to much higher quality dataset labeling as shown in Tab. 2.

D VLM As a Physics Judge

We utilize a VLM to evaluate the realism of different candidate videos. The videos are scored on the
scale 1-5, and an optional reference video and the prompt describing the video (e.g,. “tree swaying in
the wind") is provided. We also use Cotracker [17] to annotate the videos with motion traces. The
system prompt is provided in Fig. 15.

Table 2: PIXIEVERSE Ablation. The effect of in-context physics examples on data quality. We
include the executionability rate, which computes the fraction of times that a physic simulation can
be successfully run without numerical explosion, and the realism score judged by Gemini.

Method Exec. Rate ↑ VLM Score ↑
W/ In-context Examples (Ours) 100.0% 4.83±0.09
W/o In-context Examples 62.5% 1.34±0.30
NeRF2Physics [42] 45.0% 1.09±0.28

27

You are a physics−realism judge for animation videos.

You will be shown several candidate animations of the SAME 3D object responding
to the SAME textual prompt that describes its intended physical motion.

Your tasks:
1. Carefully watch each candidate animation.
2. Describe what’s going on in the animation.
3. Evaluate how physically realistic the motion looks (0−5 scale).
4. Identify concrete pros / cons affecting the score (e.g. energy conservation
errors, temporal jitter, incorrect response to gravity, static etc.).
5. Suggest specific improvements.
6. Pick the overall best candidate.

Please output ONLY valid JSON with the following schema:
{
"candidate_evaluations": {
"candidate_0": {"description": str, "score": float, "pros": str, "cons": str,

"suggested_improvements": str},
"candidate_1": { ... },
"candidate_2": { ... }

},
"best_candidate": "candidate_i", // the key of the best candidate
"general_comments": str // any overall remarks (optional)

}

NOTE: ignore missing videos. Still return score for ‘candidate_{idx}‘ that are
present.

NOTE: to make your job easier, we have also annotated the video with the Co−
Tracker. Cotracker is a motion tracker algorithm to highlight the moving parts in
the videos.

Pay close attention to the motion traces annotated in the videos to gain
information on how the object is moving.
Note that for objects that barely move, there will still be dots in the Co−
Tracker video, but the motion
(lines) will be very short or non−existent, indicating that the points are not
moving.

Cotracker can sometimes produce noisy traces so only use it as a reference, and
consider the motion of the object as a whole, and other visual cues.

Figure 15: VLM Evaluator’s System Prompt.

28

E Model architecture

E.1 Overview

We employ a 3D UNet-based architecture for both discrete material segmentation and continuous
material parameter regression. The architecture consists of two main components: (1) a feature
projector for dimensionality reduction, and (2) a 3D UNet backbone for spatial processing.

E.2 Feature Projector

The feature projector is used when the input feature dimension differs from the conditioning dimen-
sion:

• Input features: The model supports three input modalities:
– RGB features: F ∈ RN×3×D×H×W

– CLIP features: F ∈ RN×768×D×H×W

– Occupancy features: F ∈ RN×1×D×H×W

• Projection: Features are projected to a unified conditioning dimension of 32 channels using a
feature projector with hidden dimension of 128 (when input channels > 32). The projector consists
of three layers of Conv3D, GroupNorm and SiLU activation.

E.3 3D UNet Architecture

We employ a U-Net architecture [9, 34] operating on 3D feature grids of shape RN×32×64×64×64.
The network follows a standard encoder-decoder structure with skip connections, using a base channel
dimension of 64 and channel multipliers of [1, 1, 2, 4] across four resolution levels.

The encoder begins with a 3D convolution that projects the 32-dimensional input features to 64
channels. The encoder then processes features through four resolution levels, each containing three
residual blocks. The first two levels maintain 64 channels while progressively reducing spatial
dimensions from 643 to 323. The subsequent levels double the channel count at each downsampling
step, reaching 128 channels at 163 resolution and 256 channels at 83 resolution. Downsampling
between levels is performed using strided 3D convolutions with stride 2.

At the bottleneck, the network processes the lowest resolution features through a sequence of
residual block, attention block, and another residual block, all operating at 83 spatial resolution with
256 channels. Note that in our implementation, attention blocks are disabled by setting attention
resolutions to empty.

The decoder symmetrically reverses the encoder path, utilizing skip connections from corresponding
encoder levels. Upsampling is achieved through nearest-neighbor interpolation with a scale factor of
2, followed by 3D convolution. Each decoder level matches the channel dimensions and number of
residual blocks of its corresponding encoder level.

Each residual block follows the formulation ResBlock(x) = x + f(x), where f consists of layer
normalization, LeakyReLU activation with negative slope 0.02, 3D convolution with kernel size
3, another layer normalization and activation, dropout, and a final zero-initialized 3D convolution.
When input and output channels differ, the skip connection employs a 1 × 1 × 1 convolution for
channel matching.

The final output layer applies layer normalization, LeakyReLU activation, and a 3D convolution that
projects to either 8 channels for discrete material classification or 3 channels for continuous material
parameter regression.

F Additional Results

We visualize the physics predictions by our model in Fig. 16. Figure 17 breaks down the material
accuracy across semantic classes of PIXIEVERSE between our PIXIE CLIP versus two ablated
versions using RGB and occupancy input features. Figure 18 qualitatively compare the ablated
methods on the real-world scenes.

29

Figure 16: PIXIE Prediction Visualization. PIXIE simultaneously recovers discrete material class,
continuous Young’s modulus (E), Poisson’s ratio (ν), and mass density (ρ) with a high degree of
accuracy. For example, the model correctly labels foliage as elastic and the metal can as rigid, while
recovering realistic stiffness and density gradients within each object.

flowers
grass

metal crates
toys

sand
shrubs

snow & mud

soda cans

sport b
alls tree all

Occupancy

RGB

CLIP (Ours)

71% 48% 67% 67% 47% 79% 6% 64% 79% 74% 64%

54% 69% 78% 85% 31% 92% 52% 83% 96% 60% 72%

99% 93% 100% 100% 100% 99% 100% 100% 100% 96% 99%

0.0

0.5

1.0

A
cc

ur
ac

y

Figure 17: PIXIE Ablation’s Per-class Accuracy on synthetic scenes. CLIP features generalizes in
synthetic scenes, outperforming RGB and occupancy on all classes.

30

Figure 18: PIXIE’s Feature Type Ablation on Real Scenes. Replacing CLIP features with RGB or
occupancy severely degrades the material prediction. Incorrect predictions such as leave mislaballed
as metal or Young’s modulus being uniform within an object are marked with question marks. This
highlights the power of pretrained visual features in bridging the sim2real gap.

31

	Introduction
	Related Work
	Method
	Pixie Physics Learning
	PixieVerse Dataset

	Experiments
	Synthetic Scene Experiments
	Zero-shot Generalization to Real-World Scenes
	Pixie's Feature Type Ablation

	Conclusion and Limitations
	Preliminaries
	Learned Scene Representation
	3D Visual Feature Distillation Details
	Material Point Method (MPM) for Physics Simulation

	PixieVerse Dataset Details
	Object Selection from Objaverse
	Object Filtering
	CLIP-Driven 3D Semantic Segmentation
	VLM Actor-Critic Labeling

	The Effects of Human Prior on PixieVerse
	VLM As a Physics Judge
	Model architecture
	Overview
	Feature Projector
	3D UNet Architecture

	Additional Results

